python中怎么使用tensorflow实现数据下载与读取

本篇内容介绍了“python中怎么使用tensorflow实现数据下载与读取”的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成

本篇内容介绍了“python中怎么使用tensorflow实现数据下载与读取”的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成!

一、mnist数据

深度学习的入门实例,一般就是mnist手写数字分类识别,因此我们应该先下载这个数据集。

tensorflow提供一个input_data.py文件,专门用于下载mnist数据,我们直接调用就可以了,代码如下:

import tensorflow.examples.tutorials.mnist.input_data
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)

执行完成后,会在当前目录下新建一个文件夹MNIST_data, 下载的数据将放入这个文件夹内。下载的四个文件为:

python中怎么使用tensorflow实现数据下载与读取

input_data文件会调用一个maybe_download函数,确保数据下载成功。这个函数还会判断数据是否已经下载,如果已经下载好了,就不再重复下载。

下载下来的数据集被分三个子集:5.5W行的训练数据集(mnist.train),5千行的验证数据集(mnist.validation)和1W行的测试数据集(mnist.test)。因为每张图片为28×28的黑白图片,所以每行为784维的向量。

每个子集都由两部分组成:图片部分(images)和标签部分(labels), 我们可以用下面的代码来查看 :

print mnist.train.images.shape
print mnist.train.labels.shape
print mnist.validation.images.shape
print mnist.validation.labels.shape
print mnist.test.images.shape
print mnist.test.labels.shape

如果想在spyder编辑器中查看具体数值,可以将这些数据提取为变量来查看,如:

val_data=mnist.validation.images
val_label=mnist.validation.labels

二、CSV数据 

除了mnist手写字体图片数据,tf还提供了几个csv的数据供大家练习,存放路径为:

/home/xxx/anaconda3/lib/python3.5/site-packages/tensorflow/contrib/learn/python/learn/datasets/data/text_train.csv

如果要将这些数据读出来,可用代码:

import tensorflow.contrib.learn.python.learn.datasets.base as base
iris_data,iris_label=base.load_iris()
house_data,house_label=base.load_boston()

前者为iris鸢尾花卉数据集,后者为波士顿房价数据。

三、cifar10数据

tf提供了cifar10数据的下载和读取的函数,我们直接调用就可以了。执行下列代码:

import tensorflow.models.image.cifar10.cifar10 as cifar10
cifar10.maybe_download_and_extract()
images, labels = cifar10.distorted_inputs()
print images
print labels

就可以将cifar10下载并读取出来。

“python中怎么使用tensorflow实现数据下载与读取”的内容就介绍到这里了,感谢大家的阅读。如果想了解更多行业相关的知识可以关注恰卡网网站,小编将为大家输出更多高质量的实用文章!

本站部分文章来自网络或用户投稿,如无特殊说明或标注,均为本站原创发布。涉及资源下载的,本站旨在共享仅供大家学习与参考,如您想商用请获取官网版权,如若本站内容侵犯了原著者的合法权益,可联系我们进行处理。
后端

vue cli怎么配置和使用

2022-7-15 22:17:57

后端

JavaSE中抽象类与接口怎么定义及使用

2022-7-15 22:18:12

搜索