这篇文章主要介绍“怎么使用C++实现页面的缓冲区管理器”的相关知识,小编通过实际案例向大家展示操作过程,操作方法简单快捷,实用性强,希望这篇“怎么使用C++实现页面的缓冲区管理器”文章能帮助大家解决问题。
1. 实验目标
本次实验要实现一个页面的缓冲区管理器。
具体要实现以下的函数:
~BufMgr():
清除所有脏页并释放缓冲池和 BufDesc 表
void advanceClock():
用来找到下一个时钟的位置
void allocBuf(FrameId& frame):
使用时钟算法分配自由帧;如有必要,将脏页写回磁盘。
void readPage(File* file, const PageId PageNo, Page*& page)
通过调用 lookup()方法检查页是否已经在缓冲池中。当页不在缓冲池中可以在哈希表上抛出 HashNotFoundException 以获取帧编号。
void unPinPage(File* file, const PageId PageNo, const bool dirty)
减少一个页面的占用次数
void allocPage(File* file, PageId& PageNo, Page*& page)
通过调用 file->allocatePage()方法在指定的文件中分配一个空页。此方法将返回新分配的页。然后调用 allocBuf()以获取缓冲池帧。接下来,将一个条目插入到哈希表中,并在帧上调用 Set(),以正确设置它。
void disposePage(File* file, const PageId pageNo)
功能是释放一个页面
void flushFile(File* file)
功能是找到含有对应文件的页面,并释放
2. 代码实现
BufMgr::~BufMgr() { delete hashTable; delete[] bufPool; delete[] bufDescTable; }
直接调用 delete 删除哈希表、缓冲池、缓冲池表
void BufMgr::advanceClock() { clockHand++; if (clockHand >= numBufs) { clockHand %= numBufs; } }
将时钟提前到缓冲池的下一帧。
如果指针超过了最大值,进行取模操作。
void BufMgr::allocBuf(FrameId &frame) { unsigned pinned = 0; while (true) { advanceClock(); if (!bufDescTable[clockHand].valid) { frame = clockHand; return; } if (bufDescTable[clockHand].refbit) { bufDescTable[clockHand].refbit = false; continue; } if (bufDescTable[clockHand].pinCnt) { pinned++; if (pinned == numBufs) { throw BufferExceededException(); } else { continue; } } if (bufDescTable[clockHand].dirty) { bufDescTable[clockHand].file->writePage(bufPool[clockHand]); bufDescTable[clockHand].dirty = false; } frame = clockHand; if (bufDescTable[clockHand].valid) { try { hashTable->remove(bufDescTable[clockHand].file, bufDescTable[clockHand].pageNo); } catch (HashNotFoundException &) { } } break; } }
遍历栈区寻找可用的页面。如果是没有被使用过的页面,直接进行分配。如果缓冲区所有的页面都被占用,那么会进行报错 BufferExceededException()。如果找到脏页,会将它写回磁盘,并将脏页标记给清除。如果不是脏页,那么就进行分配操作。如果它在哈希表中要将它移除。
void BufMgr::readPage(File *file, const PageId pageNo, Page *&page) { FrameId frame; try { hashTable->lookup(file, pageNo, frame); bufDescTable[frame].refbit = true; bufDescTable[frame].pinCnt++; page = (bufPool + frame); } catch (HashNotFoundException &) { allocBuf(frame); bufPool[frame] = file->readPage(pageNo); hashTable->insert(file, pageNo, frame); bufDescTable[frame].Set(file, pageNo); page = (bufPool + frame); } }
如果页面在缓冲池中,增加它的占用次数,调用 page 返回指向该页面的指针。
如果页面不在缓冲池中,那么将页面读取到缓冲池,插入哈希表中,调用 set 正确设置该界面,调用 page 返回指向该页面的指针。
void BufMgr::unPinPage(File *file, const PageId pageNo, const bool dirty) { FrameId frame; try { hashTable->lookup(file, pageNo, frame); } catch (HashNotFoundException &) { //没有该页面 cerr << "Warning: unpinning a nonexistent page" << endl; return; } //找到页面 if (bufDescTable[frame].pinCnt > 0) { bufDescTable[frame].pinCnt--; if (dirty) { bufDescTable[frame].dirty = true; } } else { //pin = 0,抛出异常 throw PageNotPinnedException(bufDescTable[frame].file->filename(), bufDescTable[frame].pageNo, frame); } }
如果缓冲池中没有该页面,进行异常提示。
如果在缓冲池中,那么将它的占用次数减少。如果占用次数为 0,进行报错。
void BufMgr::flushFile(const File *file) { for (FrameId fi = 0; fi < numBufs; fi++) { if (bufDescTable[fi].file == file) { if (!bufDescTable[fi].valid) { throw BadBufferException(fi, bufDescTable[fi].dirty, bufDescTable[fi].valid, bufDescTable[fi].refbit); } if (bufDescTable[fi].pinCnt > 0) { throw PagePinnedException(file->filename(), bufDescTable[fi].pageNo, fi); } if (bufDescTable[fi].dirty) { bufDescTable[fi].file->writePage(bufPool[fi]); bufDescTable[fi].dirty = false; } hashTable->remove(file, bufDescTable[fi].pageNo); bufDescTable[fi].Clear(); } } }
遍历整个表,找到含有对应页面的缓冲页,移除并清空该页面。如果页面是脏页,则将其写回磁盘,初始化脏页标记。如果页面被占用或者页面不可用,则进行报错。
void BufMgr::allocPage(File *file, PageId &pageNo, Page *&page) { FrameId frame; Page p = file->allocatePage(); allocBuf(frame); bufPool[frame] = p; pageNo = p.page_number(); hashTable->insert(file, pageNo, frame); bufDescTable[frame].Set(file, pageNo); page = bufPool + frame; }
掉用 allocatePage()分配一个新页面,加入哈希表,调用 set(),返回该页面指针。
void BufMgr::disposePage(File *file, const PageId PageNo) { FrameId frame; try { hashTable->lookup(file, PageNo, frame); hashTable->remove(file, PageNo); bufDescTable[frame].Clear(); } catch (HashNotFoundException &) { } file->deletePage(PageNo); }
删除一个页面。如果它在缓冲池中,要将缓冲内容一并删除。
3.实验结果
12个样例均能通过,实验结果如下:
me].Clear(); } catch (HashNotFoundException &) { } file->deletePage(PageNo); }
删除一个页面。如果它在缓冲池中,要将缓冲内容一并删除
关于“怎么使用C++实现页面的缓冲区管理器”的内容就介绍到这里了,感谢大家的阅读。如果想了解更多行业相关的知识,可以关注恰卡网行业资讯频道,小编每天都会为大家更新不同的知识点。